Some thoughts on how to measure association strength
The concept of **Association** is central to the study of language and mind.
Some types of associative links between linguistic elements

- form – meaning (i.e. signs, Constructions in CxGs)
- form – form (collocations)
- form – function (colligations)
- meaning – meaning (semantic fields/networks)
- sign – sign (collostructions)

Association strength is the glue between units
Association in language processing: Local syntactic ambiguity

Information about **associative relationships speeds-up comprehension** (e.g. Hare et al. 2003, 2004; Wiechmann 2008; Zeschel 2008)

► **association** between a given

verb & complementation type [nominal/sentential]

The athlete revealed his problem...
Nominal complement
... with drugs

Sentential complement
... worried his parents
How to measure association strength?

Situation:
Many candidate measures suggested in the corpus linguistic and computational linguistic literature (Evert 2004 lists as many as 47 measures).

Question:
Which one should we use?
- Is (brute force) co-activation frequency too crude?
- Is predictiveness of a stimulus more important?
- And if so, how exactly should we measure?

Answer:
Let's put them to the test
Steps involved in the analysis

1. COMPUTATION of association strength:
 VERB & NOMINAL OBJECTS
 [47 candidate measures]

2. GROUPING of measures output wrt similarity
 [cluster analysis]

3. EVALUATION of corpus-based results experimental data
 (eye-tracking data)
 [regression modelling]
For all candidate measures (n=47),
Compute **association strengths**
verb – nominal complements

21 polysemous verbs
Corpus: BNC$_{\text{spoken}}$
N = 6417

<table>
<thead>
<tr>
<th>INPUT: Frequency signature</th>
</tr>
</thead>
<tbody>
<tr>
<td>nominal complements</td>
</tr>
<tr>
<td>verb v</td>
</tr>
<tr>
<td>other verbs</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

NP complements
S complements
Step 1: Assessing association strength

Fisher exact test

- Fisher Exact pv
- minimum sensitivity (MS)
- discounted odds ratio

verbs: believe, realize, say, feel, claim, assume, suggest, understand, expect, notice, remember, discover, promise, deny, announce, accept, established, report, hear, write, mention
Step 1: Assessing association strength

VERB – **NP** **COMP**

Fisher exact test - (disc) odds ratios - minimum sensitivity
Step 2: (Dis-)similarity of association measures

- Fisher's exact test
- Corrected chi-squared test
- Binomial likelihood
- Raw frequency
- Minimum Sensitivity
- Pointwise MI
- (discounted) odds ratios
- MI (confidence interval at alpha .05)
Step 3: Corpus-based result vs. Experimental data
(eye-tracking - Kennison 2001)

(a) The student **revealed** **his problem** **worried his parents**
(b) The student **revealed** that **his problem** **worried his parents**

SUBJ **V** **NP** disambiguation

Quantity of interest:
fixation times deltas (in ms)
Regression analysis (example)
Degree of fit (co-)determines adequacy of measure

Coefficient of interest:
Adjusted R^2 from quadratic models
Best measure:
Minimum Sensitivity
adjusted $r^2 = .34$
Minimum Sensitivity (MS)
(Pedersen & Bruce 1996; Pedersen 1998)

MS uses two conditional probabilities:
$P(\text{verb} \mid \text{construction})$ and $P(\text{construction} \mid \text{verb})$
Minimum Sensitivity should be the measure of choice, because it is...

1. *free from underlying distributional assumptions* that are not met by natural language data.

2. *computationally less demanding* than exact statistical hypothesis tests (e.g. Fisher-Yates test)

3. *less dependent on sample sizes* than (exact or asymptotic) statistical hypothesis tests

4. *empirically most adequate* not only in the present study but it in Krenn (2000).
Thank you for your attention.

And special thanks to...

Sheila Kennison (U Oklahoma) for sharing her fixation time data,

Steffi Wulff (U Michigan) for her ICE-isomorphic BNC-sample

Stefan Gries (UCSB) for his Cluster Eval 0.9

Stefan Evert (U Osnabrück) for his UCS 0.5

...and their helpful comments.
References:

Hare, Mary L., Ken McRae and Jeffrey L. Elman

Pedersen, Ted

Pedersen, Ted and Robert Bruce
1996 What to infer from a description. Technical Report 96-CSE-04, Southern Methodist University, Dallas, TX.

Wiechmann, Daniel

Zeschel, Arne